第99章

  “折腾几个月之后,我终于确认了一件事:要想彻底解决这些问题,万国宝必须理解这个话题、理解说话和听话的人、理解这个世界。理解越多翻译越准确。
  “当时我还没弄明白想要的是什么。项目组认为这是ai技术中的两个经典课题:知识系统和行为认知。我在文献堆里碰了一鼻子灰,最后还是霍桑一语惊醒梦中人。他告诉我,我想要的是通用人工智能。‘你要是真解决了所有自然语言的翻译,你就有了一个可以自己学习一切的智能。也就是解决所有智能问题的智能。也就是比人类大脑更像大脑的大脑。’这是他的原话。他劝我适可而止,因为谷歌内部最前沿的自然语言项目也暂时不敢有这种野心。网购平台并不需要这种级别的自动翻译,人和ai总是互相适应的。真实的人在使用智能翻译时知道局限,不会那么贫嘴。他还吐槽,说那个美国买家设定是我的‘红脖子偏见’在作怪。
  “霍桑点醒了我,也刺激了我。万国宝的诞生,第二个应该感谢的人是他。一位伟大的工程师,伟大的朋友。2029年春节,我坐在家中从头开始考虑。不仅是手上的工作,还考虑自己整个事业的开头。
  “我们这一代搞ai的,很多人都有共同的‘召唤时刻’:2016年阿尔法狗击败围棋世界冠军,夺走了人类智慧的荣耀。阿尔法狗赢下第五盘棋那天,我就选定了专业。也是从那天开始,ai圈子里有个争议最大的问题:阿尔法狗到底会不会下围棋?看完网络直播之后,我不吃不睡思考这个问题,后来的十二年却从没想过。因为从那天起,我不下围棋了。
  “这问题听起来很白痴。它把围棋大天才李世石和柯洁都灭了,还能不会下棋?但是学术界对这个问题很严肃。我们换个问法:它‘脑子’里面理解围棋吗?
  “我们先来看它是怎么下棋的。我给个最直白的描述:阿尔法狗先记下几百万盘人类对局,用概率工具统计人类棋手在各种局面下的落子选择,用来模仿。然后用另外两个概率工具统计某种局面有多大概率胜利,以及某一手有多大概率导致这种局面。然后它就开始用这三个工具自己跟自己下,不断推演计算下一步。我们知道,围棋可能的局面数量比宇宙中的原子还多。阿尔法狗那么强大的计算硬件也不可能暴力穷尽所有局面。所以还要有第四个工具,作为框架支撑前三个:含有随机猜测的搜索算法,用有限的计算量倒推搜索,搜出获胜概率最高的下一手。
  “完了。就这么简单。搞ai的人给这些工具取了各种酷炫的名字,深度学习卷积网络、估值策略函数、蒙特卡洛树,等等。不是我们想蒙人。这些概率学工具,你没有相关专业博士学位就没法理解它们的道理和窍门。总得有个名字吧——但它们的实质就是这么简单粗暴。
  “所以当时那些又懂点ai、又会下棋的人就不高兴了,比如说我。这不是下围棋,我们下棋时想的不是这些。我们脑子里是定式、外势、实地、死活、棋型、轻重、缓急等等,一座逻辑和直觉交织而成的宫殿,无限复杂,无限美丽。这个最精妙的游戏被阿尔法狗变成了反复掷骰子,只因为它的记忆力和计算力超过我们亿万倍。
  “2029年春节,我坐下想了十分钟,就抽了自己一巴掌。十二年前太无知了!阿尔法狗当然会下棋!实际上,我们每个人开始学棋的时候下法都跟它相同。我们先看别人下棋。然后有样学样,把第一子下在角上,并不知道为什么。然后学‘金角银边草肚皮’。这就是最简单的估值函数。然后学定式。这是统计优化之后的模仿,概率已经被定式书预先计算过了。然后学死活,这是带分支树的自我应对推演。阿尔法狗用什么工具,我们就用什么工具。这就是围棋最本源的下法。
  “那么,为什么我们后来就整出那么多花样,跟阿尔法狗完全不同呢?”
  中华田园估值函数:金角银边草肚皮
  听众的嗡嗡声变大了。技术代表们非常专注,政府代表们一脸茫然,日本和韩国代表团全体兴奋,译员们被一连串围棋术语整得死去活来。
  靠讲台最近的加拿大代表团用的是华人译员。那译员灵机一动,全部换成国际象棋术语来翻译。当然是硬凑加胡编,代表们听得频频点头。图海川也听见了,冲他伸个大拇指。
  “会下围棋的请举下手?”
  不超过五十人。日本和韩国代表几乎是全体。
  “会下国际象棋的请举手?”
  举手起码多了五倍。
  图海川想了想说:“那也不能将就你们。这个问题,围棋比象棋本质得多,因为它几乎没有人为规则。非得用它才能讲清楚。”
  下面响起零星的嘘声。图海川讪笑着,跷起二郎腿喝水。
  张翰一看他那满不在乎的屌样,斜靠椅背放松的身体,就知道“泥巴时刻”来了——就是朱越在泥巴里面做爱的状态。他手心顿时涌出一把汗。
  「–」
  “当然是因为我们太低能。”
  图海川用空瓶子指着自己的脑袋:“这东西功率不到100瓦,信息传输速度不到每秒100米。阿尔法狗下一盘比赛电费都要3000美元,传输速度是光速。我们发明了这个游戏,一开始和狗的玩法是一样的——本来就该这么玩嘛。然而只要稍稍入门,计算量上去了,我们的脑子就不够用了。要想玩下去,那就只能猛烈削减计算量。

上一章目录+书签下一章